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Abstract 
Turn-By-Turn (TBT) betatron oscillation data is a very 
powerful tool in studying machine optics. Hundreds and 
thousands of turns of free oscillations are taken in just few 
tens of milliseconds. With beam covering all positions 
and angles at every location TBT data can be used to di-
agnose focusing errors almost instantly. This paper de-
scribes a new approach that observes focusing error col-
lectively over all available TBT data to find the optimized 
quadrupole strength, one location at a time. Example will 
be shown and other issues will be discussed. 

 
Figure 1. Horizontal position deviations at HP618 are plotted 
against model’s expected positions for 200 consecutive turns. 

INTRODUCTION 
TBT data for lattice function measurement has been pre-
sented before [1] and has been used at Fermilab Main 
Injector [2] for many years. Although most of the meas-
ured results were within 10-15% of design lattice function 
some deviated more substantially. One example would be 
the measurement made at 150 GeV flat-top energy. The 
procedure to be outlined in this paper was developed 
while examining this TBT data for quadrupole errors.  

It was first noticed that TBT position deviations, from 
expected positions calculated by model, tend to form odd-
ly shaped contours when plotted against the expected po-
sitions. Figure 1 shows one such contour as example, 
where data from HP618 is plotted. These contours turned 
out to be signatures of focusing error. By adjusting quad-
rupole magnet strength upstream it is possible to collapse 
the contour down to a band-shaped distribution. 

To use this signature to guide the search for quadrupole 
errors it is necessary to treat the machine as a beamline, 
not a circular ring, and watch the development of position 
deviation contour one location at a time. The model will 
need to be adjusted to match the data wherever quadru-
pole error is determined. The methodology will be dis-
cussed in detail and some result will be shown.  
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Figure 2. Simulated position deviations due to quadrupole 
error, matching that of HP204. Actually, a tiny amount of sextu-
pole had to be introduced to make upper-right end look a little 
bit pointed, as seen in data.  
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Figure 3. Simulation of position deviations at HP618, as 
shown in Figure 1. The ellipse transported without error is plot-
ted in green and ellipse with error in blue. Both reference to the 
vertical axis on the left. The red contour shows simulated posi-
tion deviation vs. expected position and reference to the vertical 
axis on the right. 
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Figure 4. Teardrop shaped contour at HP206. 

SIMULATING POSITION DEVIATIONS  
To get an understanding of what it takes to produce posi-
tion deviation contours as observed a 2-cell FODO lattice 
model was constructed on an Excel spreadsheet. A phase 
space ellipse was transported twice, once with perfect 
optics and the second time with quadrupole error and also 
with sextupole field.  

With quadrupole errors used in simulation symmetric 
ellipse-shaped contour, such as the one shown in Figure 2, 
is observed. With addition of sextupole the contours can 
take up many different forms. Figure 3 shows a simula-
tion of data from HP618, as shown in Figure 1. Other 
examples, along with data being simulated, are shown in 
Figure 4, 5, 6, and 7. It became clear that sextuple effect 
dominates the shaping of contours. Those different sets of 
parameters used to match data contours at various loca-
tions can be rationalized as matching the accumulated 
effect from upstream quadrupole errors and sextupoles.  

Being able to simulate these data contours is important. 

 ____________________________________________  

†  Operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy.  

‡   E-mail: yang@fnal.gov 



It established a necessary condition, i.e. quadrupole is 
effective in correcting observed position deviations. 
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Figure 5. V-band shaped contour at HP414. 
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Figure 6. Tumbled-rock shaped contour at HP428. 
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Figure 7. Banana shaped contour at HP508. 

 
Figure 8. TBT initial orbit parameters were fitted using only 
five data points, plotted in green dots. With VP601 as the start 
of beamline HP602 is the first horizontal plane BPM, the first 
green dot. For each turn data progression is from left to right and 
wraps around on the left. Bottom plot, turn #90, showed that 
beam was kicked at MI 520, five BPMs before start of next turn. 

DATA 
Fermilab Main Injector has 106 BPMs in the horizontal 
plane and 109 in the vertical plane, providing up to 2048 
turns of TBT data each. Extraction kicker at MI52 was 
used to excite free betatron oscillation in the horizontal 
plane. There are 200 turns of horizontal plane TBT data, 
taken at 150 GeV flat-top, used in the analysis presented 
here. Figure 8 shows five turns of full ring data, from turn 
#90 to #94.  BPM data used in the analysis has been cor-
rected with gain calibrations derived from TBT data anal-
ysis [3]. 

For beamline starting at VP601 five horizontal plane 

BPMs from locations 602, 604, 606, 610, and 612 were 
used to fit for TBT initial orbit parameters. Because of its 
higher gain response BPM HP608 was excluded in the fit. 
Though gain correction has definitely brought it back in 
line with others it is still on the watch list. 

 
Figure 9. Strength of Q616 was scanned and corresponding 
chi-square values, from fitting position deviations at HP618, are 
plotted. The horizontal plot axis is in KG/M/Amp with default 
strength right at the middle. The location of minimum can be 
calculated from the second order polynomial fit as shown. 

QUADRUPOLE STRENGTH SCAN 
Position deviations at HP618, and shown Figure 1, is used 
as example to demonstrate the quadrupole strength scan-
ning procedure. Quadrupole Q616, at 107° in phase ad-
vance ahead of 618 location, is the natural choice for the 
scan. Also shown in the figure is the result of a second 
order polynomial fit to the plotted position deviations. 
The fitted chi-square serves to characterize the open-ness 
of a contour and is the value to be minimized. 

Plotted on Figure 9 are chi-square values as a function 
of Q616 strengths used in the scan, covering a range of 
±3.0% from the default quadrupole strength. By setting 
new quadrupole strength to where chi-square minimum is, 
-1.1% from default, the resulted position deviation con-
tour collapsed into a V-shaped band seen in Figure 10. 
Now, it is easy to see why a second order polynomial fit 
is needed, i.e. to deal with the second order effect that 
model is not accounting for. 

 
Figure 10. HP618 error after optimized strength for quadrupole 
Q616 was used in the model calculation. 

WORKING ON BEAMLINE 

Fitting for initial orbit parameters 
Since all data turns are independent initial orbit parame-



ters need to be extracted from data individually. It is im-
portant that start of beamline is chosen where accurate 
initial orbit parameters can be extracted from available 
data. For this analysis five BPMs were used and they are 
shown as green dots in turn data plots of Figure 8. The 
corresponding RMS of fit, shown above each turn plot, is 
consistent with the RMS noise of BPMs used. By nature 
TBT turn data can be re-segmented into individual passes 
of data, for beamline beginning at any given location. 

 
Figure 11. Example of single turn orbit data. Bottom plot 
shows BPM data in green circles and the matching model calcu-
lation in magenta trace. Top plot shows position deviations be-
tween data and model calculation.  

 
Figure 12. Overlaid plot of horizontal plane position deviations 
from all 200 turns used in the analysis.  

Expected orbit from Beamline Model 
For each turn the model propagates initial orbit parame-
ters down the beamline to every BPM location. Figure 11 
shows the comparison between data and model calcula-
tion for turn #107. The beamline starts from VP601, as 
indicated by solid red arrow, moves to the right, and 
wraps around on the very left. The deviations are small at 
the beginning and grow larger as beamline continues. 
Figure 12 gives an overall view with overlaid plot of posi-
tion deviations from all 200 turns. 

Scanning position deviation data 
Starting from beginning of beamline position deviations 
were examined one location at a time, and quadrupole 
scans were performed in the way described above. The 
improved matching between data and model calculation, 
using modified quadrupole strengths, can be seen in Fig-
ure 13 and 14. Same data, turn #107, is plotted in Figure 
13 for comparison with Figure 11. The deviations clearly 
are much smaller. Substantial improvement can be seen 
when comparing Figure 14 to Figure 12, where deviations 
from all 200 turns are plotted. 

 
Figure 13. Same turn #107 data is plotted. The newly found 
quadrupole strengths are used for model calculation. The match 
between calculation and data is clearly much better. 

 
Figure 14. Overlaid plot of 200 turns of position deviations 
with modified quadrupole strength used in model calculation. 

The errors 
It is important that fitted initial orbit parameters do not 
inject non-existent error that will require un-warranted 
corrections later. A complimentary analysis with beam-
line starting at a different location would provide an im-
portant second diagnosis.  

Several factors may be contributing to the residual de-
viations seen in Figure 14, for example, poorly executed 
scan that leads to bad correction, a few percent calibration 
error of BPM reading, and the still un-accounted for sex-
tupole or even higher order effects. 

CONCLUSION 
The procedure presented clearly has helped to reduce 
overall deviations significantly, with relative ease. Sextu-
poles, being a permanent feature of the ring, will need to 
be incorporated into the model. While cumulative effect 
from all sextupoles around the ring may be negligible on 
turn-to-turn basis it is not so in this transfer line analysis. 

It should be noted that this procedure is not limited to 
looking for quadrupole errors. By modifying the target of 
minimization it could in principle be used to look for 
skew quadrupole errors and sextupole errors as well. 

REFERENCES 
[1] M.J. Yang, “Lattice Measurement with TBT BPM 

Data”, PAC 1995, pp. 2500. 
[2] M.J. Yang, “Lattice Measurement For Fermilab Main 

Injector”, PAC 2007, pp. 3498. 
[3] M.J. Yang, et al, “A BPM Calibration Procedure Us-

ing TBT Data”, PAC 2007, pp. 3928. 


